Monday, December 14, 2015

The Diaphragm and the Liver Sinew Channel, Part 1

Image modified from
Toldt's Atlas of Anatomy.
Labels added to highlight
Liver sinew channel
In the last post we discussed how the Spleen sinew channel connected to the anterior aspects of the diaphragm; we looked at dysfunctional patterns associated with this sinew channel and how this relates to breathing and posture. 

This post will look at the Liver sinew channel and the posterior aspects of the diaphragm. This connection is mediated through both the quadratus lumborum and psoas muscles as their fascia blends with that of the diaphragm. This occurs at the 12th rib for the QL and the superior portion of the psoas. 

Before getting to the diaphragm, let's look at the Liver sinew channel in the thigh and work up to its connection at the posterior diaphragm. There are two prominent fascial septa in the medial thigh; an anterior septum which separates the quadriceps from the adductors, and a posterior septum which separates the adductors (primarily adductor magnus) from the hamstrings.

The anterior septum is associated with the Liver sinew channel and links the more anterior adductors such as adductor longus, adductor brevis, and pectineus with the distal iliopsoas tendon.

While the iliacus and psoas muscles (which together make up the iliopsoas) have a common attachment distally, each muscle takes a different, though similar, pathway as it moves proximally. 


Posterior Abdominal Wall, from Netter's Atlas of Anatomy.
Labels added to highlight Liver sinew channel.
The iliacus portion attaches to the iliac fossa on the medial ilium. Its proximal portion at the iliac crest connects to the distal portion of the quadratus lumborum (QL). This places the QL on a direct fascial plane with the adductors and iliacus and makes it a much more Yin muscle in terms of depth and fascial connection. 

Other authors usually assign the QL to Yang channels, most often the Gallbladder, but occasionally the Urinary Bladder. Legge. Maciocia, and Kendall place it in the Gallbladder sinew channel. Whitfield Reaves has some interesting commentary in his book based on his struggles with this muscle and its channel relationships. He deems it too lateral to be easily assigned to the Urinary Bladder and too medial for the Gallbladder channel (he does not refer to the sinew channels, specifically). All of this is understandable, based on where it would be palpated and needled. 

However, I have become convinced that it more properly belongs in the Liver channel, based on the fascial plane it exists on; functional relationships it has with the Gallbladder sinew channel muscles such as the gluteus medius and minimus (this will be a future topic); and my own findings of consistent reactivity of LIV-5 to QL pain at Yaoyan (its iliac crest attachment), Pigen (its 12th rib attachment), or in the midbelly at its motor point (this will be discussed more in part 2 of this post).  

To continue with the fascial connection, the QL attaches to the inferior portion of the 12th rib, while a portion of the diaphragm attaches to the superior portion of this rib. However, the fascia between these attachments is continuous. This fascial connection can be illustrated with the scenario of an actress who has her 12th rib removed (an actual cosmetic procedure, used to reduce waist size). Neither the QL nor the diaphragm needs to be cut surgically. The 12th rib is cut away and the periosteum (containing both the QL and diaphragm attachments) is teased away from the rib. The rib is then removed and the QL-periosteum-diaphragm is kept intact.

The psoas has a more direct pathway, covering the same basic territory as the QL-iliac muscle to blend with the fascia of the posterior portion of the diaphragm at its proximal end.

In Sports Medicine Acupuncture®, we look at the cases where the too-tight diaphragm can impinge on and inhibit the psoas. This inhibition of the psoas destabilizes the back and leads to pain, which often comes on when the breathing is challenged during exercise. Matt Callison teaches a technique he developed to assess for this, and he treats it with a particular needle technique at ST-20. This assessment and technique is better left to in class training, but it is interesting that ST-20 descends both Stomach Qi (not surprising for an ST channel point in this region), but also descends rebellious Lung Qi. Could this be considered a case of Metal overacting on Wood, as breathing restrictions are inhibiting the proper firing of a Liver sinew channel muscle?

Image from Deadman's
A Manual of Acupuncture
To briefly restate the anatomy: this sinew channel follows the anterior septum of the thigh up the medial leg. This would include a series of fascially linked structures such as the adductor longus, the adductor brevis, the pectineus, and the distal iliopsoas. This would then branch at the iliopsoas, with one portion linking the psoas to the posterior diaphragm and another branch linking the iliacus to the QL to the posterior diaphragm. Note that classically the Liver sinew channel ends at the groin. However, I feel, for reasons described above and in future posts, that a strong argument exists for extending it up to the diaphragm.

In the next post we will look more thoroughly at dysfunctional patterns associated with the Liver sinew channel and its connection to the diaphragm. We will explore various postural changes that can be observed (as we did with the Spleen sinew channel) and we will explore various pain patterns that arise. 



No comments:

Post a Comment