Showing posts with label Spleen Sinew Channel. Show all posts
Showing posts with label Spleen Sinew Channel. Show all posts

Tuesday, December 14, 2021

Anatomy, Dissection, and the Chong Mai

 
I just finished leading two 5-day dissection classes for the University of Tampa Physician Assistant program. While I was teaching ‘standard’ Western anatomy and guiding the student teams through the full body dissection, the Chinese medical channel system was never too far from my mind. I did occasionally share some of this information to the PA students, but it is obviously not the anatomy that they are studying, and I was sparing with this information. Below is one aspect I shared, and something that I got an even better appreciation of: the anatomy associated with the chong mai, or penetrating vessel.

Inferior epigastric artery and vein connecting
into iliac artery and vein.
One of the tables (there were teams of 5 people working on each donor) produced a very similar view to this image on the left. This is created by slowly resecting the obliques, then cutting the rectus abdominis from the pubic bone and resecting it superior. Underneath the rectus abdominis are these vascular structures which are the epigastric artery and vein. There is some complicated anatomy associated with the fascial layers inferior to the umbilicus (look up the arcuate line if you want more information), but suffice it to say that these vascular structures run deep to the rectus abdominis, and that the fascial plane that they run in dives a bit deeper as these blood vessels connect with the iliac artery and vein.

Epigastric artery and vein running
deep to the rectus abdominis

This fascial plane is what I associate with the Spleen sinew channel; it is the fascial plane that runs deep to the rectus abdominis, connects with the anterior diaphragm and then follows the diaphragm around to the crura (attachments on the lumbar spine) of the diaphragm. However, this fascial plane also houses these epigastric arteries and veins. These vascular structures change names as they reach the thoracic cavity, becoming the internal thoracic artery and vein (also called the internal mammary artery and vein), and running along the deep surface of the sternum and anterior ribcage. During dissection, we cut a window through the sternum and ribcage to access the thoracic cavity; when we remove this window and look at the undersurface, these vascular structures are apparent.

Internal thoracic artery and vein
running just posterior to the
anterior ribcage

Traveling superior, these arteries and veins join with the subclavian artery and brachiocephalic vein. It is not necessary for this discussion to get too detailed about this anatomy, but there is a relationship between these vessels coming from the thoracic cavity and similar vessels in the neck which supply the neck and face.

Collectively, these vessels supply the skin, muscles, and bone on the anterior region of the body, umbilical region, diaphragm, pleura, pericardium, thymus, and important structures of the neck.

Finally, in the thoracic cavity, these blood vessels branch into the intercostal arteries and veins; they drain into the thoracic aorta and a venous structure called the azygos vein, all in the posterior portion of the thoracic cavity and consistent with the posterior branch of the chong mai. Clinically, these vessels act as a collateral circulation for blood movement from and to the heart. If there is obstruction in the aorta, blood will take this collateral circulation route. If the blood is abundant, these vessels can be filled, so they act as a bit of a reservoir.

Go back and review the chong mai with this anatomy in mind and you will see it in an entirely different light. These structures are in the myofascial plane of the Spleen sinew channel, regulated by a Spleen channel point, SP 4, and they clinically match the description and topography of the chong mai.



Facebook icon Google Search icon LinkedIn icon Instagram icon YouTube icon

Saturday, May 12, 2018

Assessment and Treatment of the Channel Sinews: Pes Planus

Fig. 1: A technique referenced below which can be used for pes planus 

Last Fall, Matt Callison and I put together a presentation for the Pacific Symposium in San Diego, CA. We presented on pes planus, a condition where the foot rolls into excessive pronation during weight bearing due to a collapse of the medial arch.

In the presentation, we discussed assessment and treatment of pes planus and discussed some common injuries associated with it. The role the channel sinews (jingjin) play in proper support of the medial arch and how imbalances can contribute to pes planus was emphasized. This month, Matt Callison will be expanding on this presentation for the keynote presentation at the Sports Acupuncture Alliance. I won't be able to make this event, but thought I would write a bit of an intro for those attending. You can consider this a study guide.

For those not able to attend, you can get a small flavor of the class and start to play with some of the information. If you are interested in expanding on this, it is taught in the Sports Medicine Acupuncture Certification starting in San Diego, June 19-24.

Fig. 2 Pronation includes dorsiflexion, eversion, and abduction;
supination includes plantarflexion, inversion, and adduction.
During gait, the foot is in supination at heel strike. After heel strike and as the weight travels into the foot, it transitions into pronation as it absorbs the body's weight (Fig. 2).

Normal pronation causes an increase in tension (a good thing, in this case) as the elastic myofascial structures in the foot are lengthened. The result of this is an elastic recoil which helps propel the weight off the foot and back into supination.

Fig. 3
In pes planus, the foot over-pronates and cannot recover into supination for adequate push-off from the big toe (Fig. 3).

Due to the altered mechanics in the foot and into the leg, pes planus sets a person up for a host of potential injuries such as plantar faciosis, Morton's neuroma, tibialis posterior tendinopathy, tarsal tunnel syndrome, Achilles tendinopathy, shin splints, medial knee injuries and injuries into the low back and hip. Clinicians working with these conditions will achieve far better results if they help correct pes planus, thus reducing the mechanical strain that led to the injury.

For the acupuncturist, it is important to understand the channel relationships associated with pes planus. This can be facilitated by looking at the muscles and other fascial structures which support the medial arch and understanding which channel sinew they are part of. The two main channel sinews which support the medial arch are the Spleen and the Kidney. The relevant anatomy is below:

Fig. 4: Yellow line is tibialis
posterior (medial side) &
anterior (lateral side) - SP&ST;
blue line is peroneus longus
and brevis - UB;
black line is soleus and
abductor hallucis - KID.
  • Spleen jingjin - tibialis posterior, flexor hallucis brevis
  • Kidney jingjin - soleus, plantar fascia (main portion), abductor hallucis
The Stomach jingjin is also involved. A relevant structure is the tibialis anterior which also helps support the medial arch.

In pes planus these structure fail to lift the medial arch, they are inhibited and become over-lengthened as the foot overpronates. The qi of these structures is dropped and needs to be lifted.

In pes planus as the Spleen and Kidney jingjin fails to lift and support the medial arch, other structures become excessively shortened. These structures are part of the Urinary Bladder jingjin and include:
  • Urinary Bladder  jingjin - gastrocnemius, peroneus longus and peroneus brevis, adductor digiti minimi, plantar fascia (lateral band)
In pes planus the Urinary Bladder jingjin is locked-short and is pulling excessively up. The qi of these structures excessively lifts and needs to be dropped and lengthened.

A technique that we teach in SMAC and Matt will be teaching at the Sports Acupuncture Alliance involves needling motor points of the involved structure and lifting, dropping, or lengthening the channel sinew. This is an advanced technique and can best be taught in a class setting. There is a sample in the image at the top of this blog post which involves lengthening the lateral band of the plantar fascia, a myofascial structure which becomes short and tight in pes planus.



Facebook icon Google Search icon LinkedIn icon Instagram icon YouTube icon

Sunday, May 6, 2018

The Stomach and Spleen Qi Palpated in the Quadriceps

Fig. 1: A myofascial release technique to lengthen and move the vastus lateralis (lateral quadriceps) inferior. This is particularly useful when the vastus lateralis is excessively pulling upward on the patella, causing it to track improperly. If this tissue, which is part of the ST sinew channel, is palpated and felt to be very restricted and it feels as if it is pulling excessively upward, it might be useful to ask if there are other rebellious ST qi signs.
Note: this manual technique is particularly useful after acupuncture including use of the extra point xinfutu which is the vastus lateralis motor point, located 1-2 cun lateral from ST 32 (futu) with 0.5-1 inch needle depth.


One very interesting and quite useful observation when working with the musculoskeletal system is that the qi of the organs can be observed and palpated in the channels system. Of course, being part of the channels system, this includes the sinew channels. A very clear example of this is seen when working to balance the patella.

Fig. 2: Patella resected to see the
femoral groove. 
The patella tracks in the femoral groove (Fig. 2). The patella is a sesamoid bone. These 'sesame seed like' bones are enveloped in tendon, and it is the quadriceps tendon that surrounds the patella on its way to the tibial tuberosity. Two muscles out of this group are particularly important for balanced tracking of the patella: the vastus medialis and the vastus lateralis.

The vastus lateralis is part of the Stomach jingjin and the vastus medialis is part of the Spleen jingjin. These muscles blend in with the lateral retinaculum and medial retinaculum of the patella respectively, and through this pull have a strong influence on the tracking of the patella. It is frequently the case that the vastus lateralis is overactive and pulls excessively upward on the lateral portion of the patella while the vastus medialis is inhibited and fails to lift the medial edge. The patella becomes pulled lateral and frequently has a medial tilt (the top points medial). This can be assessed by observing that the lateral edge frequently does not lift adequately and that the patella does not rotate away from the medial tilt (Fig. 3).

Fig. 3: Assessment of the patella with a relaxed and extended knee. The patella can be rotated to see range and ease of movements and the medial and lateral edge can be lifted to assess ease of motion. When the vastus lateralis is overactive and the lateral retinaculum is excessively tight, it is typical to observe difficulty rotating the patella laterally and difficulty lifting the lateral edge.


With your next patient who has chondromalacia patella or patellofemoral syndrome, do a mobility test on the patella and palpate the vastus medialis and vastus lateralis. These muscles can be a window into not only the function of the patella, but the function of the zangfu. Recall that in TCM the Stomach qi descends while the Spleen qi ascends. One of the functions of the Spleen is to lift. When you are palpating the vastus lateralis (ST jingjin), feel whether it is excessively tight and pulling on the patella through the lateral retinaculum. For the vastus medialis (SP jingjin), feel whether it lacks tone and is failing to lift the medial edge of the patella through the medial retinaculum. This can help understand how these muscles are involved with patellar tracking issues, but can also guide questioning to see if there are signs of internal disharmony such as rebellious Stomach qi and/or Spleen qi deficiency. If the vastus lateralis is excessively pulling upwards, you might find rebellious Stomach qi signs. If the vastus medialis lacks tone, you might find Spleen qi deficiency signs. The observation found with palpation can help guide questioning and/or can put information from you TCM assessment into context.

Facebook icon Google Search icon LinkedIn icon Instagram icon YouTube icon

Monday, February 22, 2016

The Sinew Channels (Jingjin) and Vertebral Fixations

Below is a link for an article I wrote which will be featured in the Spring edition of the Illinois Association of Acupuncture and Oriental Medicine newsletter. The full article below.

The Sinew Channels (Jingjin) and Vertebral Fixations
By Brian Lau, DOM, AP, C.SMA

This article will explore vertebral fixations and their relationships to both extraordinary vessels (Qi Jing Ba Mai) and the sinew channels (Jingjin). In Sports Medicine Acupuncture®, assessment of vertebral fixations is an important part of overall assessment and treatment when working with sports injuries and orthopedic conditions. Extraordinary vessel (EV) point pairs are used in conjunction with local needling at the M-BW-35 (Huatuojiaji) points, and with mobilization techniques, to free restrictions preventing proper vertebral movement. The Huatuojiaji needle technique and the mobilization are used to balance asymmetrical locking of the facet joints, where one side is locked in a closed position in relation to the other side. The EV point pairs regulate specific global strain patterns that stress the spine in specific regions. These strain patterns will be the focus of this article.

Vertebral fixations are assessed by motion tests and by manual muscle tests. Vertebral fixations at specific regions of the spine will cause bilateral weakness of specific muscles when testing with manual muscle tests.1 Interestingly, the muscles that become bilaterally weak are not innervated by the spinal nerves at the level of fixation. To gain insight into this phenomenon, it is useful to look at the sinew channels, note their connection to the spine, and understand how they can exert a negative influence on these spinal segments when dysfunction exists. Bilateral muscle weakness can then be seen through a channel relationship.

The Spleen Sinew Channel, The Penetrating Vessel (Chongmai), and Thoracic Vertebral Fixations

Fig 1: ©Brian Lau/drbrianlau.blogspot.com
The Spleen (Pi) and the Stomach (Wei) sinew channels are associated with the abdominal muscles and converge at the abdominal aponeurosis, a broad, flat connective tissue structure which attaches the internal and external obliques and the transverse abdominis at the rectus abdominis. The fascia of the external obliques travels anterior to the rectus abdominis muscle while the fascia of the internal obliques bifurcates; half of it travels anterior, half posterior. The transverse abdominis travels completely posterior to the rectus abdominis.2,3,4

The fascia which travels anterior to the rectus abdominis (that of the external obliques and part of the internal obliques) comprises the abdominal portion of the Stomach sinew channel while the posterior fascia comprises the abdominal portion of the Spleen sinew channel. This posterior abdominal fascia is continuous with the anterior portion of the diaphragm at the inner surface of the anterior ribcage.2,4 From here, one could follow the diaphragm around to its connection to the lumbar spine. This connection, called the crus of the diaphragm, attaches to the lumbar spine at L1 and L2.3 Restriction in this portion of the Spleen sinew channel can contribute to fixations at the T11-L2 vertebral levels.


Fig. 2: ©
Matt Callison/
Sports Medicine
Acupuncture
One could also follow the diaphragm up to the central tendon. The pericardium attaches to the central tendon on its superior surface, and is in the same fascial layer which comprises the hyoid muscles.2 This plane (posterior abdominal fascia-diaphragm-pericardium-hyoids) could be considered part of the sphere of influence described by the Penetrating Vessel. For all practical purposes, the Spleen sinew channel can be seen to follow this upward trajectory also. This portion of the channel can contribute to fixations from T3-T9.

When the Spleen sinew channel does not have adequate length, the abdomen becomes bowed and distended and the chest is depressed. This adds tension to the thoracic region and contributes to fixations in this region.

Vertebral fixations of these regions cause bilateral weakness of muscles that are part of the Urinary Bladder (Pangguang) sinew channel. These include the lower trapezius (for fixations of T11-L2), the teres major (for fixations of T3-T9), and the gluteus maximus (for fixations of C1-C3, which are not discussed in this article).1 This can be understood as a five element relationship involving the Earth and Water elements. These channels create a dynamic balance, as the Spleen and Stomach sinew channels consist of flexors of the legs and torso and converge at the abdominal aponeurosis while the Urinary Bladder sinew channel consists of extensors of the legs and torso and converges at the thoracolumbar aponeurosis, when looking at fascial connections, at least.2,4 When vertebral fixations are present, SP-4 (Gongsun) and P-6 (Neiguan) are added to the treatment.







The Liver and Kidney Sinew Channels, The Yin Motility Vessel (Yin Qiao), and Lumbar Vertebral Fixations

Fig. 3: © Brian Lau/drbrianlau.blogspot.com
The Liver (Gan) sinew channel travels up the medial leg and thigh and consists of the adductor longus, adductor brevis, pectineus, and the psoas major.5

The Kidney (
Shen) sinew channel includes the adductor magnus and the semimembranosus muscles. These structures link with the pelvic floor muscles which are then continuous with the anterior longitudinal ligament,2,5 which travels up the anterior portion of the spine.

The psoas major attaches to the lumbar transverse processes, the vertebral bodies, and even the intervertebral discs of the lumbar vertebrae.2,3 The psoas is more in a direct line with the Liver sinew channel, but since it attaches to the vertebral bodies and intervertebral discs and therefore links with the anterior longitudinal ligament, it also converges with the Kidney sinew channel.




Fig. 4: © Matt Callison/
Sports Medicine Acupuncture
When the psoas does not have adequate length, there is excessive lumbar lordosis and lack of freedom in the lumbar spine. This contributes to vertebral fixations of lumbar vertebrae.

Vertebral fixations of the lumbar vertebrae cause bilateral weakness of neck extensors.1 This can best be understood through the relationship of the Yin Motility Vessel (Yin Qiao) and Yang Motility Vessel (Yang Qiao). As one becomes short and tight, the other becomes flaccid. This is traditionally discussed in the context of their relationship to the muscles of the legs, but the relationship can continue throughout the entire channel.6 When vertebral fixations are present, KID-6 (Zhaohai) and LU-7 (Lieque) are added to the treatment.










The Urinary Bladder Sinew Channel, The Yang Motility Vessel (Yang Qiao), and Occiput-C1 Vertebral Fixations

Fig. 5: © Matt Callison/
Sports Medicine
Acupuncture
The Urinary Bladder (Pangguang) sinew channel traverses the posterior portion of the body and includes the muscles of the calves, the hamstrings, the sacral fascia, the erector spinae muscle group, and the suboccipital muscles which binds this channel to the occiput.5,7 These suboccipital muscles control the fine movements of the atlanto-occipital joints, and can contribute to fixations at this region.

When the suboccipital muscles do not have adequate length, there is capital extension and restriction in movement at the atlanto-occipital joint. This contributes to fixations of the occiput and C1.
Vertebral fixations of the occiput and C1 cause bilateral weakness of the psoas major.1 Again, this can be understood via the relationship of the Yin Motility Vessel and Yang Motility Vessel. When vertebral fixations are present, BL-62 (Shenmai) and SI-3 (Houxi) are added to the treatment.

Note: Vertebral fixations at C4-C6 and sacroiliac fixations, all treated with GB-41 (Zulinqi) and SJ-5 (Waiguan), are not discussed in this article. Also not discussed are fixations at C7-T2, which are treated with KID-6 (Zhaohai) and LU-7 (Lieque). These are left out to avoid excessively lengthy discussion.


References

1. Walther, David S. Applied Kinesiology: Synopsis. Pueblo, CO: Systems DC, 1988. Print.

2. Myers, Thomas W. Anatomy Trains: Myofascial Meridians for Manual and Movement Therapists. 3rd ed. Edinburgh: Churchill Livingstone, 2014. Print.

3. Netter, Frank H. Atlas of Human Anatomy. 6th ed. Philadelphia, PA: Saunders Elsevier, 2014. Print.

4. Stecco, Carla, and Warren I. Hammer. Functional Atlas of the Human Fascial System. Edinburgh: Elsevier, 2015. Print.

5. Legge, David, and Karen Vance. Jingjin: Acupuncture Treatment of the Muscular System Using the Meridian Sinews. Sydney: Sydney College, 2010. Print.

6. Wang, Ju-Yi, and Jason D. Robertson. Applied Channel Theory in Chinese Medicine: Wang Ju-Yi's Lectures on Channel Therapeutics. Seattle: Eastland, 2008. Print.
7. Wilke, Jan, Frieder Krause, Lutz Vogt, and Winfried Banzer. "What Is Evidence-Based About Myofascial Chains: A Systematic Review." Archives of Physical Medicine and Rehabilitation (2015). Web.




Facebook icon Google Search icon LinkedIn icon Instagram icon YouTube icon

Thursday, January 21, 2016

The Spleen and Stomach Sinew Channels and Patellar Tracking

From Grant's Atlas of Anatomy,
showing patellar surface where the
patella tracks during knee movement.
Internally-externally related sinew channels often function together to stabilize major joints and allow for balanced mobility of these joints. In some respects, they can have an agonist-antagonist functional relationship across these major joints. Patellar tracking and the Spleen and Stomach sinew channel provides an excellent example of this phenomenon.

In many ways these two sinew channels, not unlike their respective primary channels and organs, work more in unison compared to other internally-externally related sinew channels. These channels contain the quadriceps; the Spleen sinew channel including the vastus medialis (medial quadriceps) and the Stomach sinew channel including the rectus femoris and vastus lateralis (lateral quadriceps). These work together to perform knee extension.

Image from: http://smartrad.blogspot.com/2012/04/patellofemoral-pain-syndrome.html
Patient was a 40 year-old man with bilateral knee pain. Examination revealed tight lateral restraint.
A tight lateral restraint indicates a tight lateral retinaculum which fails to allow proper medial patellar glide and tilt. Note the excessive lateral pull on the patella.
So, how is it that these separate sinew channels balance the patellofemoral joint? To understand this, it is useful to look at the tensional pull the vastus lateralis and vastus medialis have on the patella. When looking at basic muscle anatomy texts, one sees that the quadriceps tendon wraps around the patella and then attaches to the tibial tuberosity. Actually it is called the patellar ligament from the patella to the tibia as it connects bone to bone, but it is the same structure as the quadriceps tendon. .

The vastus lateralis muscle blends in with the lateral retinaculum and the vastus medialis blends in with the medial retinaculum and both exert a pull on the patella. In balance, this influences the tracking of the patella in the femoral groove. Often, the vastus lateralis becomes overactive and the vastus medialis becomes inhibited, contributing to an excessive line of pull in a lateral direction. This is referred to as patellofemoral syndrome. It contributes to early degenerative changes in the cartilage of the patella, femur and/or tibia. Looking from a sinew channel perspective, this condition can be seen as a disorder between the Spleen and Stomach sinew channels.

Simultaneous stimulation of xinfutu (upper left) and
baichongwo (lower right).
Treatment with acupuncture can consist of specific release techniques of the lateral retinaculum and specific local needling for the patellar pain. But the muscle firing can be directly affected by needling the motor point of the vastus lateralis which is at the extra point xinfutu, and needling the motor point of the vastus medialis which is at the extra point baichongwo. Getting Qi in both and stimulating these points at the same time can help balance the firing of these two important muscles related to the tracking of the patella.

In addition, SP-6 and ST-36 can be added. The vastus lateralis and lateral retinaculum blend in with the fascia of the tibialis anterior. ST-36 is the motor point of this muscle and will help with the release of the Stomach sinew channel. SP-6 is a good distal point to assist with the ‘tonification’ of the vastus medialis. It has an interesting anatomical aspect that is discuss in a previous blog post called Sanyinjiao (SP-6)–Three Yin Crossing.


Facebook icon Google Search icon LinkedIn icon Instagram icon YouTube icon

Tuesday, December 8, 2015

The Diaphragm and the Spleen Sinew Channel

Fig.1: Diaphragm, Anterior and Superior view, from
Grant's Atlas of Anatomy.
This is Part One of a post that will explore the sinew channels and their relationship to the respiratory diaphragm. This post will highlight the Spleen sinew channel (and will also discuss the Chongmai). The next post will highlight the Liver sinew channel. 

The respiratory diaphragm is a large, complex and extremely influential muscle. Its unrestrained movement is essential for proper breathing. This involves not only freedom in the muscle itself for it to ascend and descend, but also freedom in related structures which, when restricted, can act as a clamp and prevent expansion of the abdomen and thorax. Structures such as the the abdominal muscles, pectoral muscles, serratus anterior, and certain cervical muscles are among those that can be particular detrimental to breathing when they are restricted. In addition, the visceral organs move with each breath, so freedom in the diaphragm requires good circulation and unrestrained mobility in the organs for proper response to the diaphragmatic movement. Cervical pain, low back pain, thoracic outlet syndrome, and hypochondriac and rib joint pain are just some of the many conditions that can occur with poor breathing due to dysfunction associated with the diaphragm.

From a Traditional Chinese Medicine standpoint, the ascending and descending of the diaphragm is important as it regulates the ascending of Spleen Qi and descending of Stomach Qi. Vietnamese educator and Classical Chinese medicine scholar Nguyen Van Nghi described the acupuncture point BL-17 from this standpoint, indicating that the reason it was both the Back Shu of the diaphragm and such an influential point of blood production was tied to the fact that it regulated the upward and downward  movement of the diaphragm, thus regulating the upward and downward movement of the Spleen-Stomach Qi mechanism, both being so integral to the production of blood.

This and the next post will look at the relationship of the sinew channels to the diaphragm, especially those of the Spleen and Liver sinew channels. I have been exploring the sinew channels for about 15 years, first as a taiji and qigong practitioner, then as structural integration practitioner (the body of work that includes Rolfing) and then as an acupuncturist. I was not thinking about these directly as sinew channels when I practiced structural integration, but was very influenced by Tom Myers' development of Anatomy Trains as these seem to relate to the 'tendons' we referred to in our 'tendon changing' exercises in taiji and qigong practice. As I transitioned into acupuncture, I noticed a lack of description of these sinew channels and have been working to develop these more thoroughly. I feel there is enormous potential in having a more detailed anatomical knowledge of them, and in using this specificity of detail to inform clinical decisions.

Much of this material is influenced by my practice first in structural integration and then in acupuncture, specifically through my work with Matt Callison and Sports Medicine Acupuncture®. This information is condensed from a lecture I have been giving in the certification program for Sports Medicine Acupuncture®. This primarily explores the sinew channels from the perspective of fascial planes, how these channels relate (internally-externally, six division, midday-midnight, five elements), and how they communicate proprioceptively through the fascia.

Fig 2: Cross section above the umbilicus which highlights the fascia anterior
and posterior to the rectus abdominis. This fascia is associated with the
Stomach and Spleen sinew channels.
The first sinew channel to explore relating to the diaphragm is the that of the Spleen. Actually, it might be better to consider this as a pair involving the Stomach and the Spleen. As in much of Chinese medicine, the physiology of the Stomach and the Spleen sinew channels are very tied together. Often internally-externally related sinew channels have an agonist-antagonist relationship when looking at how they balance a particular joint complex. With the Spleen and Stomach sinew channels, they work much more together. We will look at the anatomy of these channels in relationship to the torso in this post.

The fascia associated with the rectus abdominis muscle is particularly relevant to these channels. The fascia of the external obliques travels anterior to this musclel the fascia of the internal obliques bifurcates, half of it travels anterior, half posterior. The transverse abdominis travels completely posterior to the rectus abdominis. Note: this changes below a structure called the arcuate line, which is roughly in the region of Ren-6, at which point the rectus abdominis becomes deep to all of this fascia and continues to connect to the pelvic floor.



Fig. 3: Image from www.brucelee.com.
The fascia which travels anterior to the rectus abdominis (that of the external obliques and part of the internal obliques) comprises the abdominal portion of the Stomach sinew channel. Following this fascia superiorly reveals that the anterior fascial layer is continuous with the fascia anterior to the ribcage, especially the sternalis fascia. This fascia then connects with that of the sternal head of the sternocleidomastoid muscle (SCM). When this layer is short and tight, the abdomen is often very flat and possibly bowed concave, the sternum is pulled down, and the head is pulled forward. The build of a boxer comes to mind, but I am including an image of Bruce Lee as this is so apparent on him. The tension in the abdominal muscles hasthe capacity to prevent adequate expansion of the abdomen during an inhale and can limit a full breath. 

Fig. 4: Spleen Sinew Channel image from Deadman's
A Manual of Acupuncture.
The posterior abdominal fascia has a different trajectory, and is continuous with the costal margin attachments of the diaphragm at the inner surface of the anterior ribcage. From here, one could follow the diaphragm around to its connection to the lumbar spine. This connection is called the crus (feet) of the diaphragm and connects this muscle to the lumbar spine at L1 and L2 (Fig. 1). This would describe the Spleen sinew channel as seen in Fig. 4. 

However, one could also follow the diaphragm up to the central tendon (Fig. 1). The pericardium attaches to the central tendon on its superior surface. The pericardium is in the same fascial layer which comprises the hyoid muscles. This plane (posterior abdominal fascia-diaphragm-pericardium-hyoids) could be considered part of the sphere of influence described by the Chongmai and accessed through SP-4 (Fig. 5). Also included in this layer is the transversis thoracic muscle, an interesting muscle on the posterior surface of the ribcage that shares a similar trajectory to the portion of the Chongmai that disperses in the chest (Fig. 5). For all practical purposes, I consider the Spleen sinew channel to follow this upward trajectory in addition to the attachments at the lumbar spine. And, not surprisingly, SP-4 (paired with PC-6) is a powerful point combination to affect this region.

Fig. 5: Chongmai from
Deadman's A Manual of
Acupuncture.
When this layer is restricted, the abdomen is bowed convex and is distended (not unexpected in Spleen Qi deficiency, for instance). Also the solar plexus region is collapsed inward. Often, there is an appearance of someone being punched directly in the solar plexus. Simone Lindner, my fellow faculty member in the Sports Medicine Acupuncture Certification program and a senior instructor with KMI (the program that teaches Anatomy Trains and Kinesis Myofascial Integration), often states that when she sees this pattern, she wonders if, at some influential point in their development, this person had 'their breath taken away'. This could be physical through some direct trauma or emotional. But it is usually pretty deeply seated in their physiology. And, more important to the discussion, it obviously restricts breathing. Patients who present with this pattern generally take very shallow breaths into the belly, with very minimal movement expanding into the chest. It appears that these patients cannot take a full expansive inhale, and are stuck on the exhale portion of the breath. Fig. 6 highlights this, notably the bowing of the abdomen, the collapse of the chest and the general restriction of the ability to take an inhale expanding into the chest.






Fig. 6: Image courtesy
Matt Callison / Sports
Medicine Acupuncture
Used with permission
Releasing this posterior rectus abdominis fascia usually is rewarded with a profound release of the breathing and marked improvement in the ability to take a full inhale. This can be released manually by starting at the Spleen channel and insinuating fingers behind the rectus abdominis to reach the Kidney channel and waiting for a release. The fascia can also be lifted or dropped depending on the need. Acupuncture needles can instead be used following the same trajectory as the fingers. Upon the release of this layer, the breath is able to move from the abdomen into the chest, allowing for a full expansion in the chest.

In the Sports Medicine Acupuncture Certification program (in 2016 it will be in Chicago), we cover vertebral fixations and their treatment with mobilization techniques, specific needle techniques at Huatuojiaji points and use of extraordinary vessel points. Fixation at specific levels (certain midback and cervical regions) which are treated with SP-4, PC-6 are understood better by thoroughly comprehending the anatomy explained above. And the treatments described in this post can supplement the treatments explored more thoroughly in these classes.

Before moving on to the Liver sinew channel in the next post, it might be useful to note that the abdominal obliques do travel around the body to the lumbar region, and their fascia blends in with the thoracolumbar fascia and attaches to the spine. This accounts for the Stomach sinew channel attaching to the spine (Figures 7 and 8). This layer also needs to be open and free for a full expansive breath.










Fig. 7: Abdominal and Thoracolumbar Fascial Layers
from John Hull Grundy's Human Structure and Shape.


Fig. 8: Stomach Sinew Chanel from Deadman's
A Manual of Acupuncture.


Facebook icon Google Search icon LinkedIn icon Instagram icon YouTube icon